Students with a lively three-dimensional imagination (for model building and interpretation of structures) and an interest in computers enjoy this type of research. We solve structures of interesting new zeolite materials by determining exactly the atomic positions of all atoms in the crystal. Research students usually start by building physical models. This enables them to understand the fundamental units that come together to make the material of interest. Occasionally it is possible to predict the structure of a new material only by creative model building. Usually the structure is determined using sophisticated crystallographic programs that analyze X-ray diffraction data.

My research group usually has between one and four undergraduate students (a mixture of sophomores, juniors and seniors). Students are usually chemistry, biochemistry or chemical engineering majors. A few have been biology, computer science, or other majors. They often join as sophomores, and work as much as they like. Initially, students are not expected to know anything about crystallography. We work together and learn by doing. After students gain some experience, they present their results at undergraduate research symposia (URS). These are excellent pre-professional experiences, preparing students well for successful job interviews, and graduate or professional school interviews. Past students have always cited their undergraduate research to be among their best experiences at the College.
Students with a lively three-dimensional imagination (for model building and interpretation of structures) and an interest in computers enjoy this type of research. We solve structures of interesting new zeolite materials by determining exactly the atomic positions of all atoms in the crystal. Research students usually start by building physical models. This enables them to understand the fundamental units that come together to make the material of interest. Occasionally it is possible to predict the structure of a new material only by creative model building. Usually the structure is determined using sophisticated crystallographic programs that analyze X-ray diffraction data.

My research group usually has between one and four undergraduate students (a mixture of sophomores, juniors and seniors). Students are usually chemistry, biochemistry or chemical engineering majors. A few have been biology, computer science, or other majors. They often join as sophomores, and work as much as they like. Initially, students are not expected to know anything about crystallography. We work together and learn by doing. After students gain some experience, they present their results at undergraduate research symposia (URS). These are excellent pre-professional experiences, preparing students well for successful job interviews, and graduate or professional school interviews. Past students have always cited their undergraduate research to be among their best experiences at the College.
Matt Popp (left) and Danny Schiavone, assembling a model for a new molecular sieve material, 2011-12.

Chris Babino, Dr K and Qin Qin Gao (with the zeolite models they built) after presenting their talk at the NY ACS Undergraduate Research Symposium, College of Mt. St. Vincent, 5/7/11

Danny (left) and Matt (above) presenting their research at the NY ACS URS, SUNY at Old Westbury, 5/5/2012

Dr. Corfield, Sophia Hirackis (‘11), Qin Qin Gao (‘13) and Dr K at the ACS Nichols Symposium, White Plaines, 3/18/11